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Abstract Aggregated traffic traces are commonly used in
network engineering for QoS or performance parameters
evaluation. Many performance models come from such ag-
gregated traces. However, real traffic is a marked point
process combining two processes: one for the arrival times
of packets and the other for their size in bytes. This paper
deals with assessing whether aggregated traces are a good
representation of real traffic. Based on the analysis of many
traffic traces, and focusing only on loss probability, it is
shown that the packet drop probability obtained for the ag-
gregated traffic traces can significantly differ from the real
packet drop probability obtained for the real traffic traces.
Then, a solution which enables one to obtain correct loss
probability based on aggregated traffic traces is proposed by
determining the correct aggregation scale and traffic para-
meters to be applied.

Keywords Aggregated vs. real traffic · Loss probability ·
Unit translation · Aggregation scale

1 Introduction

Modelling today’s Internet traffic is a difficult research prob-
lem. Internet traffic consists of numerous different sources,
services, access technologies, etc. In addition, traffic models
can be different from one link to the other or from one mo-
ment to another. Nevertheless, in early 90s the self-similarity
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property has been discovered as a common property in all
traffic traces of any kinds of network technologies (e.g. LAN
[9], UMTS [8], etc.) and applications (e.g. video [7], www
[5], etc.). Then, numerous different self-similar models have
been proposed. An interesting overview is given in [16].
The proposed self-similar models are able to describe the
bursty nature and complex long range dependence structure
of Internet traffic [9, 16] which were proved to be essential
for performance evaluation in networking [19], for instance.
Since then, realistic traffic models are used with network en-
gineering tools (as simulators or emulators), for instance, for
creating realistic experimental scenarios with realistic back-
ground traffic conditions. It is then expected to get, using
such realistic traffic models, realistic results, whereas it has
been recently shown that using basic models as Poisson or
Markov for Internet traffic leads to optimistic performance
estimates [14]. Note however, that most of the recent traffic
models are based on aggregated traffic traces, essentially be-
cause they are easier to compute and use compared to mod-
els relying on a proper representation of real traffic.

Traffic aggregation is one of the commonly used rep-
resentations of Internet traffic. Aggregation means that the
traffic is a random variable of the number of bytes or pack-
ets sent during a time interval Δ (called time window). Such
representation is commonly used in the traffic visualisation
(figures showing a server link utilisation [15] for instance)
and modelling (modelling aggregated traffic instead of real
traffic [16]). Theoretically, it is obvious that real traffic is
indeed different from aggregated traffic. The proper repre-
sentation of the real traffic is a marked point process that is
compounded of two processes: the packet incoming times
and the packet sizes. Since the aggregated traffic and the
real traffic representations are different it is crucial to check
if the results obtained for the aggregated traffic are the same
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as those obtained for the real traffic. Note that the term “re-
sults” needs to be precisely defined since we are not able
to analyse all possible results. Moreover, QoS and perfor-
mance parameters seem to be the most important from the
network analysis point of view. Therefore, in this research
we focused on comparing drop probability observed for a
single sever or router queue fed by the real or aggregated
traffic. The drop probability is selected because it is one of
the important QoS parameters and already raised significant
modelling work [14, 16].

In order to analyse drop probability we have written func-
tions implemented in MATLAB. The algorithm that is used
for the real traffic analyses queue length each time a new
packet arrives. The queue length for the aggregated traffic
can only be observed at the end of each time interval. Note
that drop probabilities obtained for the real and aggregated
traffic are obtained for the same trace. By the same trace we
understand that the aggregated traffic trace is the real traffic
trace aggregated over a time window.

The reason why the real drop probability can be different
from the aggregated drop probability is related to the differ-
ent ways of computing queue lengths for the real and aggre-
gated traffic because of the different traffic representations.
Note that for the real traffic a new packet can arrive at any
time and each packet has its own size. On the other hand, for
the aggregated traffic, we observe the system only after con-
stant time intervals. In this later case, the only information
we have is the number of packets arriving during this par-
ticular time window. As a consequence, counting only the
number of packets is not sufficient and packet sizes would
be missing. In order to compute the service time we have
to know the packet size for all aggregated packets. In any
paper considering aggregated traffic, we did not find infor-
mation about the packet size. On the other hand in order to
obtain the same number of sent bytes for the real and aggre-
gated traffic, we have to assume that the packet size equals
the mean packet size. Therefore, we think that for the aggre-
gated traffic traces each packet size is assumed to be equal
to the mean packet size. It is shown in this paper that such an
assumption—similarly as observing the system only at con-
stant intervals—can influence the obtained drop probability.

The paper is organised as follows. In Sect. 2, the danger
of using aggregated traces is illustrated with some examples.
Section 3 presents the methodology used for analysing the
differences obtained for real vs aggregated drop probability.
Section 4 describes drop probability as a function of the time
window, with detailed analysis of some assumptions that we
have to do in order to obtain this result. In Sect. 5, the equa-
tion presenting a solution making it possible to obtain the
same drop probability for real and aggregated process is pro-
posed. In Sect. 6 we described some consequences of using
empirical solution presented in this paper. The last section
concludes the paper and presents future research topics. Ad-
ditionally in Appendix, two proofs are shown.

2 Motivation

A common Internet traffic representation is the number of
requests, sent bytes or users logged into the system over
day, week or other amounts of time. Actually, each source
sends packets characterised by particular size and sending
time. Therefore, the precise description of Internet traffic is
a marked point process {(tl,Al), l = 0,1,2, . . .} where tl is
the lth packet arrival time and Al is the lth packet size or
any other feature [18].

The marked point process is difficult to model since the
two tl and Al processes have to be considered. The difficulty
comes from the complicated autocorrelation and correlation
function between tl and Al .

Since modelling the marked point process is difficult, the
aggregated traffic is commonly used in related literature [9,
14, 16]. The aggregated traffic is the amount of bytes or
packets sent during a time window Δ given in seconds or
milliseconds. The aggregated process is called the byte or
packet aggregated count process and denoted by WΔ(k) and
XΔ(k) respectively.

Computing drop probability for different traces, we dis-
covered that the drop probabilities obtained for the marked
point process {(tl,Al)} and the aggregated processes WΔ(k)

and XΔ(k) are not equal.
An example of different drop probability values obtained

for the same traffic trace is shown in Table 1.1 Note that the
drop probability obtained for aggregated process is Δ de-
pendent (different values were obtained for Δ = 0.001 and
Δ = 0.1). As a consequence, the drop probability obtained
for aggregated process does not equal the real drop proba-
bility for all values of Δ.

This example illustrates that the aggregated drop proba-
bility (i.e. a drop probability obtained for aggregated traffic)
can be erroneous. Therefore in this paper, we describe one
way that makes possible obtaining an aggregated drop prob-
ability as close as possible from the real drop probability, as
well as analysing the possible reasons of such difference.

3 Methodology

In order to compare the real drop probability with the drop
probability obtained for aggregated traffic, we analysed real
traces. They are GPS-synchronized IP header traces cap-
tured with a DAG family [4] Ethernet network tap. Two dif-
ferent sources of traces were used. The first was the NLANR
project [13] and the second the METROSEC project [11].

From NLANR project, traces captured at different hours
5, 8, 13 and 18 were used. The traces captured within the

1The detailed description of the methodology for getting these results
is given in Sect. 3.
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Table 1 An example of different drop probability values obtained for the same traffic trace (the analysed traffic trace contains 1 154 282 packets,
its duration is 781 seconds and MTU size is 1500 bytes), but different traffic representations and network parameters. pp is real packet drop
probability, pb is real byte drop probability, ppa and pba are respectively the drop probability obtained for the aggregated process XΔ and WΔ

where Δ is given in seconds

ρ (link B (buffer size) pp ppa,X0.001 ppa,X0.1 pb pba,W0.001 pba,W0.1

utilisation) [packets]

0.33 20 0.032 0.009 0.006 0.047 0.082 0.024

0.33 75 0.012 0.006 0.006 0.024 0.027 0.023

0.66 20 0.105 0.041 0.018 0.136 0.168 0.058

0.66 75 0.034 0.017 0.015 0.052 0.064 0.046

METROSEC project in addition contain DDoS attacks and
flash crowds. As a consequence, the traces present different
characteristics depending on the time of the day and traffic
anomalies.

Since non-stationary processes are difficult to analyse
[12], we used only traces for which the obtained traffic has
an approximately constant number of packets sent during a
time interval, and its packet size distribution was similar to a
typical packet size distribution (see [6]). As a consequence,
we have been working on traces not longer than 1 200 000
packets (which is nevertheless sufficient to get statistically
significant results).

The drop probability computation was done using MAT-
LAB for both real and aggregated traces. Each drop proba-
bility value was computed by an algorithm simulating sin-
gle server queue behaviour. For the marked point processes
(real trace), we know for each new packet the arrival time tl
and the packet size Al . Note that the service time is packet
size dependent and if the lth packet is accepted it leaves the
queue at time

τl = tl + τk + Al/C, (1)

where τk is the service time (including storing time) of the
kth packet, i.e. the one which was queued just before the lth
one, or 0 if the queue was empty at time tl . Note that k =
l − 1 only if the (l − 1)th packet was accepted and was not
served before tl . C is link capacity given in bytes per second.
By knowing the arrival and departure time of each packet,
it is possible to compute the number of packets stored in
the queue at any time. Then, the lth packet is queued if the
number of stored packets at time tl is less than B , dropped
otherwise.

For the aggregated traffic, the queue length is given by
[16, see Chap. 9]

Q(i + 1) = min(max(0,Q(i) + XΔ(i) − CΔ),B), (2)

where Q(i) is the queue length at ith time interval, C is the
link capacity, B is the queue buffer size and XΔ(i) can be
replaced by WΔ(i) if the byte queue length is considered.

Note that in this paper, as drop probability is considered,
and that the information unit handled by routers is packet,
we will consider the XΔ(i) process. Then, Q(i) represents
the queue size in terms of number of packets, B is also ex-
pressed in terms of number of packets, and for concordance
reasons, C must be expressed in terms of number of packets
per second.

In (2), the network parameters C and B are used. Never-
theless, link utilisation (ρ) is more significant when consid-
ering drop probability than C which is constant over the du-
rations considered in the simulations presented in this paper.
In order to maximise the utilisation of our traces, we consid-
ered different link capacity C = X̄/ρ for each trace, where
X̄ is the trace mean bit rate (i.e. X̄ = ∑N

l=1 Al/(tN − t1)).
Since Internet links are not heavy loaded [2], the considered
values of the link utilisation were limited in all our experi-
ments to range ρ ∈ (0.25,0.75). The second network para-
meter B was limited to range B ∈ (20,100) packets since
the default settings of the queue buffer size of Ethernet link
for cisco routers are 40 packets for output queue buffer and
75 packets for input queue buffer [21]. Generally speaking
the queue buffer sizes in Internet are short and they should
be short for performance purpose [17]. By considering such
queue buffer sizes, all the realistic values from the real net-
work point of view are studied. Moreover, for low link utili-
sation considering long queues and drop probability is ques-
tionable since we cannot observe any drops.

In this paper, for each original trace, the real drop prob-
ability pp and aggregated drop probability ppa(Δ) are com-
pared. The real drop probability pp is obtained for the
marked point process, buffer size given in packets and link
capacity given in bytes per second. Therefore, pp is the drop
probability that we would observe in the real network. The
aggregated drop probability ppa(Δ) is obtained for the ag-
gregated traffic where aggregation window is Δ. In order
to compute ppa(Δ) the terms of (2) have to be expressed
with the same units. It is important to note that link capaci-
ties are usually expressed in terms of bytes per second while
buffer size is in number of packets [21]. Therefore, in order
to compute drop probability for aggregated process (i.e. to
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use (2)) the link capacity has also to be expressed in terms of
packets per second. For computing the drop probability for
the aggregated traffic, we have to use the buffer size given
in terms of number of packets, the link capacity in terms of
packets per second, and an aggregated traffic trace obtained
by aggregating the real traffic trace using a particular time
window Δ.

Therefore, we can say that this algorithm has two steps,
the first is unit translation2 and the second is traffic aggrega-
tion. Differences between real drop probability pp and ag-
gregated drop probability ppa(Δ) can only be due to link
capacity unit (byte per second or packets per second) and/or
traffic representation (marked point process or aggregated
process). In order to determine the relative impact of link ca-
pacity unit and traffic representation, we introduced a third
drop probability: the unit translation drop probability ppu.
The unit translation drop probability ppu is obtained for the
marked point process, the buffer size given in terms of num-
ber of packets and the link capacity in packets per second
(and not the usual bytes per second unit). The unit transla-
tion drop probability ppu will make possible to isolate pos-
sible differences due only to unit translation (and not to real
traffic aggregation).

In the following, we will compare the three different drop
probabilities: the first one is the real drop probability, the
second is the drop probability obtained after the unit trans-
lation and the last one is the drop probability obtained for
the aggregated traffic trace.

The comparison between those drop probabilities is made
by using scattered plots [12]. Each point in the scattered
plots represents drop probabilities obtained from two differ-
ent computations. The x axis represents ppu or ppa(Δ). The
y axis represents the real drop probability pp for all plots.
The drop probabilities obtained for x and y coordinates are
calculated for the same trace, link utilisation and buffer size.
We used 55 different traces. For each trace we considered
different link utilisation ρ and queue buffer size B pairs. In
order to build the models we analysed 25 different ρ and B

pairs, next in order to validate the obtained model we used
another 25 ρ and B pairs. Therefore, in total we considered
1375 simulations in order to build the models and 1375 test
simulations that were used only to validate the obtained re-
sults. Note that, 1375 simulations result in 1375 drop proba-
bility values obtained for specific traffic trace representation
(for example aggregated traffic trace for which time window
is 10 ms). Therefore, in order to obtain figure where two
drop probabilities are compared (all Figs. from 2 to 7) we
did 2750 simulations since each point represents two differ-
ent drop probabilities.

2We are using term translation instead of conversion since converting
queue buffer size from bytes to packets is not as simple as a conversion
(see Sect. 4.1).

Additionally, a linear function and R2 coefficient are es-
timated. The coefficient of determination R2 is a measure
of variability of the data that is predicted by the estimated
linear function [12]. In an ideal case, the drop probabilities
are identical, the slope of the straight line is 1 and R2 = 1. If
the slope of the straight line is lower (resp. greater) than 1,
the considered drop probability overestimates (resp. under-
estimates) the real drop probability. Estimating the real drop
probability on the basis of the drop probability obtained for
aggregated traffic is less precise for lower values of R2.
Analysis of the points positions can help to understand what
type of error is achieved.

4 Aggregated traffic

The drop probability computed for aggregated traffic is the
aggregated drop probability denoted by ppa(Δ). Recall that
in order to compute ppa(Δ), the terms of (2) have to be ex-
pressed with the same units. It is important to note that link
capacities are expressed in terms of bytes per second. There-
fore, in order to compute drop probability for aggregated
process (i.e. to use (2)) the link capacity has also to be ex-
pressed in terms of packets per second. Moreover, the traffic
trace has to be aggregated over a time window Δ. Both unit
translation and aggregation window size Δ influence the ob-
tained result. Since this influence is different in its origin we
considered those factors in separate subsections.

4.1 Units translation

The real values of link capacity C and buffer size B are bytes
per second and number of packets, respectively [21] from
which the real drop probability is computed. However, in
order to compute the aggregated drop probability with (2),
the respective units have to be converted. XΔ(i) being ex-
pressed in terms of number of packets the link capacity has
therefore to be expressed in terms of packets per second (de-
noted by C′). The other solution could be considering byte
aggregation instead of packet aggregation. Nevertheless, the
byte aggregation is not very effective since the QoS para-
meter considered in this paper is the packet drop probability
[22]. The packet drop probability cannot be computed from
the byte aggregated process since for this process we only
know how many bytes are dropped. Note that packets have
different sizes and therefore we cannot easily convert num-
ber of dropped bytes to the number of dropped packets. That
is why, in this paper we are using the term translation instead
of conversion.

Translating the number of bytes into the number of pack-
ets is not easy since we do not know the unit packet size.
Note that the packet size is not constant or even regularly
distributed (see Fig. 1 or [6] for more details). Therefore the
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Fig. 1 An example of the packet size cumulative distribution function
obtained for a traffic trace (the analysed traffic trace contains 1 154 282
packets, its duration is 781 seconds and MTU size is 1500 bites)

unit packet size is not easy to compute or define. Note that
depending on the definition we can obtain different values.

The natural and almost always used way for translating
C given in bytes per second unit into the packets per second
unit consists in dividing the link speed by the average packet
size i.e.

C′ = C[bytes per second]
Ā[average number of bytes per packet] , (3)

where Ā is the mean packet size.
The unit translation can influence the results obtained for

aggregated traffic. In order to analyse only how the unit
translation influences the drop probability value, we com-
puted the drop probability for link capacity C′ and real traf-
fic trace i.e. we use exactly the same algorithm of the queue
length computation as for the real trace (see Sect. 3) using
the link capacity C′ instead of C. The drop probabilities ob-
tained for C′ and the real trace are denoted ppu and called
unit translation drop probability. Note that ppu was com-
puted using the same algorithm as pp. The only difference
is the use of C′ instead of C as the link capacity value. In
Fig. 2, the scatter plot of pp as a function of ppu is presented.

The slope of the straight line is 1.327 (see Fig. 2), i.e. af-
ter unit translation, the obtained drop probability is (in most
cases) smaller than the real drop probability. As a conse-
quence the ppu underestimates the real drop probability. For
example, for ppu = 0.06, the real drop probability pp = 0.1
(significant error of 40%). Moreover, the underestimation is
stronger for smaller values of drop probability (see Fig. 2).

Why such huge difference were obtained is very inter-
esting question. We cannot give a clear answer especially
because for different traces the effect is different. It seems
that the packet structure (like bursts’ sizes or correlation be-
tween packets’ sizes) can have a strong impact. On the basis

Fig. 2 The scatter plot of the real drop probability pp as a function of
the unit translation drop probability ppu (the link speed C′ = C/Ā)

of Fig. 1 we can conclude that for the real trace some large
packet bursts must occur. Note that for a traffic containing
mainly large packets, if we change the packet size to the
mean packet size, we observe smaller drop probability. On
the other hand it seems that there are no (or at least less than
for large packets) bursts of small packets. Note that for small
packets, changing theirs size to the mean packet size should
theoretically increase the packet drop probability.

Note that since ppu and pp have been obtained for
the same trace, the relationship between those two values
“should” be linear. Nevertheless, the points in Fig. 2 make
think we have a non-linear function pp(ppu). Since, it can be
caused only by non-linear influence of incorrect unit trans-
lation we do not try to find a better function. Instead of that,
in the next section, we are proposing some solutions which
result in proper relationship.

4.2 Time window aggregation influence

In Appendix, two theorems are proved. The first one is:

Theorem 1 ppa(Δ) → ppu for Δ → 0.

The second one is:

Theorem 2 ppa(Δ) ≥ ppa(2Δ).

Note that ppu obtained for the case for which C′ = C/Ā

is already smaller than the real drop probability pp. There-
fore, on the basis of Theorems 1 and 2 we can conclude that
the aggregated drop probability ppa(Δ) is not higher than
ppu. Since ppu is already an underestimation of pp, the re-
sults obtained for the aggregated traffic cannot be better.

In Fig. 3 results obtained for four different time windows
Δ are shown.
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Fig. 3 The scatter plot of the real drop probability pp as a function of the aggregated drop probability ppa(Δ) where the link speed C′ = C/Ā.
Each plot represents different aggregation window from t̄i (i.e. mean inter-arrival time) to 125t̄i

The results obtained for Δ = t̄i (i.e. mean inter-arrival
time) are similar to those presented in Fig. 2, what is a con-
sequence of Theorem 1. For the increasing values of Δ, the
obtained underestimation is stronger (higher slope of the
straight line), what is a consequence of Theorem 2. Another
consequence of using aggregated traffic is obtaining higher
scattering (smaller R2 value). Moreover, the underestima-
tion obtained for smaller ppa is stronger. Therefore, we can
conclude that using the aggregated drop probability as an
estimation of the real drop probability is highly inaccurate.
In order to correct this difference we propose a new way
of computing the drop probability of the aggregated traffic
traces.

5 Getting correct drop probability with aggregated
traces

The difference between real and aggregated drop proba-
bility is caused by two factors: unit translation and ag-
gregation window value. Moreover, on the basis of Theo-
rems 1 and 2 we conclude that ppu ≥ ppa(Δ) for any Δ.

Since ppu is underestimating pp we cannot find such Δ for
which ppa(Δ) = pp. Therefore, we proposed to use differ-
ent link capacity unit translation. Instead of using Ā as a
unit packet size we propose to use a real unit packet size Au.
The real unit packet size is such packet size, for which the
drop probability obtained for the capacity Cu = C/Au is the
same as the real drop probability.

The proposed definition of Au provides the equality be-
tween the real drop probability and the unit translation drop
probability. Nevertheless, it does not determine Au value.
Note, however, that the unit translation drop probability is an
increasing function of Au since increasing Au decreases Cu.
Moreover, for Au → ∞ we have Cu → 0 and ppu → 1; on
the other hand for Au → 0 we have Cu → ∞ and ppu → 0.
Therefore, we can determine such Au for which the unit
translation drop probability is identical to the real drop prob-
ability. Nevertheless, such value will be unique only for par-
ticular trace and queue parameters. Therefore we estimate
Au for many different traces and queue parameters and us-
ing a statistical model we determine Au as a function of a
specific trace and queue parameters. In order to be more pre-
cise we did not use simple linear regression model but much
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more sophisticated model called Generalized Linear Model
(GLZ) [10].

GLZ model, as any statistic model, has two types of vari-
ables: the explanatory variables (i.e. those variables that are
used to compute the results) and response variable (which
is in our case Au). Different Au values were determined
for specific traffic traces and network parameters. The traf-
fic trace can be described by numerous different parameters
from the mean packet size (simple one) to Hurst parame-
ter (much more complex). Since we would like to build a
possibly simple model we analysed the mean packet size Ā

and the average inter-arrival time t̄i . Analysing results, we
realised that the network parameters (i.e. buffer size B and
link utilisation ρ) are influencing Au, too. Therefore, those
values were also used as explanatory variables. It would be
possible to add numerous different variables describing traf-
fic trace properties. Nevertheless, the obtained results were
unexpectedly good (and completely overpassing those ob-
tained for Ā) that we did not consider more complicated
models.

Since we computed many real unit packet size values
(over 500), we can denote them by Au (where Au is a vector
of size n, where n is the amount of obtained Au values). Au

values were obtained for different explanatory variables de-
noted, for simplification, by a matrix X (where X is a matrix
of size n × k, where k is the amount of explanatory vari-
ables). On the basis of the GLZ we can write [10]

g(EAu) = Xβ (4)

where E denotes expected value, β is a vector of the esti-
mated parameters (β size is k) and g(x) is a link function.

The GLZ model enables estimating parameters even if
the response distribution is different from the normal distri-
bution, for example Gamma, Multinomial or Binomial [10].
Moreover, numerous link functions can be considered. The
link function is a function of response variable such as iden-
tical, exponential, logit, etc. Note that, using link functions
(specific functions can be used in case of particular distribu-
tion) helps to obtain more precise results since, even for non-
linear problems, the link function transformation can result
in a linear function of the explanatory variables [10]. Note
however, that by linear function we understand that the esti-
mated parameters are linear and we can use for example the
square of an explanatory variable.

The obtained equation is estimated from data using sta-
tistic package R [20]. An iterative three-stage modelling is
used [3]. The first step is to propose a model by choosing
some explanatory variables that can influence the response
variable. Note that we cannot know exactly which explana-
tory variables influence the response variable a priori. There-
fore, we can say that the first step relies on a kind of guess.
The second step deals with estimating the model parame-
ters βi . Note that some of the βi can be 0 with high prob-
ability, in our case 95%; in such a case we say that the ith

explanatory variable is not statistically significant. If any ex-
planatory variable is not statistically significant then we go
back to the first step and remove such explanatory variable
from the model. As a consequence the final model is com-
posed only with parameters that are statistically significant.

For example, we analysed a model where explanatory
variables were ρ, ρ2, B

100 , ρ Ā
1000 and ( Ā

1000 )2. Nevertheless,
the B

100 was not statistically significant. It then does not ap-
pear in the final model.

Many different models with all statistically significant
parameters can be estimated. In order to decide which of
the statistically significant models is the best (i.e. describes
data the most precisely and has the lowest number of para-
meters), information criteria were proposed [1]. In this re-
search we used the Schwarz Information Criterion (SIC).

The final equation is

Au = 820.2 − 966.5ρ + 197.1ρ2

+ 450.2

(
Ā

1000

)2

+ 769.7ρ
Ā

1000
. (5)

Since, (5) was obtained on the basis of a data set that
is limited by definition the parameters for which this equa-
tion was computed are limited. The packet mean value for
the analysed traces is Ā ∈ (350,800) since such values were
obtained for the analysed traces. Note that it is not very prob-
able that a mean packet size can be strongly lower or higher
than these range limits, since the smallest packet is 40 bytes
and the largest 1500 bytes. The link utilisation and buffer
size are ρ ∈ (0.25,0.75) and B ∈ (20,100). The justifica-
tion for these ranges were described in Sect. 3.

The parameters of (5) are then limited to the most impor-
tant values considering the real network point of view. Note

Fig. 4 The scatter plot of the real drop probability pp as a function of
the unit translation drop probability ppuAu obtained for the proper link
capacity Cu = C/Au
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Fig. 5 The scatter plot of the real drop probability pp as a function of the aggregated drop probability ppaAu(Δ) where the link speed is
Cu = C/Āu. Each plot represents different aggregation window from t̄i (i.e. mean inter-arrival time) to 125t̄i

that in the real networks, buffer sizes are small [21] and the
link utilisation is low [2]. Therefore, considering values out
of our considered range is questionable in practice. More-
over, if the network parameters are such that the real drop
probability is 0 then Au is ambiguous and considering drop
probability is questionable. Therefore, the only limitation of
our results is related to different mean packet size and higher
link utilisation. The packet size should not differ strongly
from the values considered in our research since we analysed
measurements obtained for different operational networks
and day times. Considering higher link utilisation, as already
said, is of very limited importance since in real networks, the
link utilisation is low [2].

For the new unit translation (where packet size is given
by Au) the unit translation drop probability is computed and
denoted by ppuAu. In Fig. 4, the scatter plot of new unit
translation drop probability is shown. Note that traffic pa-
rameters used in order to obtain these results are different
than those used to obtain (5).

The results obtained for Au packet size are close to ideal.
Firstly, the slope is almost 1, the intercept is close to 0 and
R2 is very high. Secondly, the scatter of the results obtained

for smaller drop probability is smaller, too. As a conse-
quence the obtained absolute error does not significantly de-
pend on the obtained drop probability value as it was for the
ppu.

The second factor influencing aggregated drop probabil-
ity is time window Δ. Therefore, in Fig. 5 results obtained
for Au unit packet size and different aggregation windows
are shown.

The obtained results show much higher accuracy ob-
tained for link capacity Cu = C/Au and different aggre-
gation windows than those obtained for C′ = C/Ā. As we
expected pp underestimation is higher for higher Δ. Nev-
ertheless, for ppa(Δ), the difference between slopes of the
linear functions obtained for Δ = t̄i and Δ = 125t̄i is higher
(0.087) than for ppaAu(Δ) (more than two times less: 0.039).
Moreover, the obtained results are scattered symmetrically
around the linear function (except for few points). There-
fore, the conclusion obtained for the aggregated traffic can
be applied to the real drop probability. Note that even if R2

is decreasing for higher Δ the value obtained for the highest
Δ is smaller than the one obtained for the smallest Δ in case
of ppa(Δ).
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The only disadvantage of (5) is its slight complexity and
dependence on ρ that can change. Therefore, we considered

Fig. 6 The scatter plot of the real drop probability pp as a function of
the unit translation drop probability ppuAu′ obtained for the proper link
capacity Cu = C/A′

u

another model where the only explanatory variable that we
used was Ā. Note that higher orders of Ā polynomials were
considered but the optimal (base on SIC) is given by

A′
u = 196.7 + 0.915Ā. (6)

The drop probability obtained for unit packet size A′
u is

denoted by ppuAu′ . The comparison between ppuAu′ and the
real drop probability pp is presented in Fig. 6.

For the simple solution A′
u the obtained results are much

more linear and more randomly scattered around the linear
regression than those obtained for the link capacity C′ =
C/Ā. The slope of the straight line is much closer to 1. R2

is just slightly smaller. Moreover, the obtained result is over-
estimation of pp. Therefore, on the basis of Theorem 2, we
expect the obtained results for the aggregated traffic to be
even better. In Fig. 7 results obtained for A′

u unit packet size
and different aggregation windows are shown.

The obtained result is very accurate according to the
simplicity of (6). The relationship between the estimated
real drop probability pp and the one that we can easily
model ppaAu′(Δ) is linear. Therefore, any conclusions ob-

Fig. 7 The scatter plot of the real drop probability pp as a function of the aggregated drop probability ppaAu′ (Δ) where the link speed is
Cu′ = C/Ā′

u. Each plot represents different aggregation window from t̄i (i.e. mean inter-arrival time) to 125t̄i
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tained for the aggregated traffic trace can be applied to the
real traffic trace. The only disadvantage is high scattering
of the obtained results (much higher than those obtained for
ppaAu(Δ)).

The obtained ppaAu(Δ) and ppaAu′(Δ) are close to the
real value pp and can be used to estimate the real drop prob-
ability since relationships pp(ppaAu(Δ)) and pp(ppaAu′(Δ))

are linear. Note that the pp(ppa(Δ)) is not linear since for
small ppa(Δ), the increase is much faster than the one ob-
tained for larger ppa(Δ). In Fig. 3, it was shown that the
drop probability obtained for the aggregated traffic trace can
significantly differ from the real drop probability. Since, nu-
merous traffic analysis are focusing on the aggregated traffic
trace, the conclusions that where obtained on the basis of the
aggregated traffic trace can be different from the real traf-
fic behaviour. We showed that it is possible to analyse drop
probability of the aggregated traffic and obtain results that
are close to the real drop probability by using (5) or (6).

6 Practical usage of obtained results

Equations (5) and (6) have been estimated on the basis of
traffic traces analysis. Nevertheless, any traffic trace analysis
is limited because of the limited characteristics of the traces
that were used. Therefore, one can question whether we can
observe such effect for different traces.

We used special techniques to estimate the equations.
Moreover, the obtained equations were tested by comparing
the values obtained from equations with values obtained for
various queue parameters, the used parameters being differ-
ent than those used in the equations estimation. Therefore,
we are quite sure that the obtained equations will hold for
similar traces i.e. traces measured on high speed link with
large aggregation level.

Nevertheless, it is not possible to check any network con-
clusions or effects on any Internet link, simply because only
some of the data are available. Therefore, our future work
will focus on testing the obtained equations on different traf-
fic traces. Moreover, Internet traffic is changing very fast; we
then would like to test the obtained equations in the future
in order to check if they are still valid.

We know that the way we obtained (5) and (6) is em-
pirical and not theoretical. The reason is very simple. The
complex nature of packet arrival time and packet size dis-
tributions makes it very difficult to find a formal proof of
what we should do to model aggregated traffic correctly. The
complexity is so high that we can find numerous different
publications dealing only with packet arrival time distribu-
tion. Note that some of those publications are contradictory!
Therefore, we preferred to find an empirical model limited
to the available traces than rely on particular assumptions
about traffic trace nature.

We hope that in future research it will be possible to find
Au using more formal way. Nevertheless this task is difficult
and probably, at the beginning, it will be solved for some
specific cases only.

7 Conclusions

The presented results reveal that estimating the packet drop
probability on the basis of the aggregated traffic, for network
engineering purposes for instance, can occur in large under-
estimation of the real packet drop probability. Such results
were obtained for different traffic traces and, most impor-
tantly, with realistic traffic parameters (low link utilisation
and small buffers).

In this paper, we proposed a way to make the drop prob-
ability obtained for the aggregated traffic similar to the real
drop probability. The proposition is based on determining
and using a specific unit packet size for which the link ca-
pacity given in packets per second is computed. There are
two solutions proposed: one is very accurate (but a bit com-
plicated), whereas the second is very simple, but of course
less precise (but still much better than solutions proposed
in previous work). The obtained equations were estimated
from simulations that, such as any simulations, can be run
only for limited ranges of parameters. Therefore, the ob-
tained equations should be used for values that are in those
specific ranges. Nevertheless, the considered ranges of net-
work parameters ρ and B are the most common and impor-
tant ones from the real network point of view. Moreover, the
traffic parameters were represented by different traffic traces
measured at different time and in different networks. There-
fore, we argue that the proposed solutions are quite general
and can be used by network engineers and researchers.

In this paper a solution for aggregating traffic traces in
order to get an aggregated loss probability similar to the
real drop probability (see (5) or (6)) was proposed. Since
drop probability is not the only QoS parameter, in the future
work, we would like to consider some other QoS parame-
ters as delay or jitter for example. This work will be focused
on determining appropriate solutions (similar to (5) or (6))
for such parameters. The final step of the analysis will be
finding a common range of aggregation scale and unit trans-
lation for aggregated traces which makes all QoS and perfor-
mance parameters simultaneously similar to the real ones.

At this point, we, at least, showed that using aggregated
traces in networking for performance evaluation has to be
made very carefully.

Appendix: The theorem proofs

Theorem 1 ppa(Δ) → ppu for Δ → 0.
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Proof In this proof, we assume that any two events are sep-
arated by some time, i.e. two events cannot happen at the
same time. Note that from a technical point of view this as-
sumption is true since a single queue is served by a single
processor that makes single operation at once.

In order to prove this theorem, it is enough to focus on
the queue behaviour, since dropping can occur only if queue
is full. Note that in order to compare queues obtained for the
real trace and the aggregated trace both link capacities have
to be given in packets per time unit (for example packet per
second). If link capacity is given in bytes per second and
we consider packet aggregated process, we are not able to
use (2) and automatically we cannot analyse such a system.

The queue length fed by the real trace can increase only
when a new packet arrives (i.e. at time ti ) and decrease when
a packet is served (let denote it by τi ). Therefore, we focus
on how different, from the real traffic, the arrival and service
moments for the aggregated trace are. The aggregated traffic
trace is a random variable Xn describing how many packets
arrived at time [(n− 1)Δ,nΔ). Since we do not know when
exactly the packets arrived or were served, we can assume
that all of them arrived or were served at time (n − 1)Δ.
Therefore, aggregating process can shift events for time not
greater than Δ.

Let choose Δ = mini,k(|li − li−k|)/2 where l is t or τ

and ti − ti and τi − τi are excluded. Note that for such Δ,
we know that in each time interval only one event can hap-
pen. Therefore, if for the real trace a packet arrives and the
queue is full (i.e. the packet will be dropped), for the aggre-
gated traffic it has to be full as well. The reason is that it is
impossible that the next service is shifted for more than Δ.
We know by Δ definition that shifting for less than Δ does
not change anything for the next event. The same conclusion
can be made for non full queue (i.e. in case the packet will
be stored). Since the same packets will be dropped or stored
for the real and aggregated traces we have to obtain the same
drop probability. This finishes the proof. �

Theorem 2 ppa(Δ) ≥ ppa(2Δ).

Proof In order to prove this theorem we consider two
processes Xi and Yi which are packet aggregations obtained
for the same real trace and different aggregation windows
2Δ and Δ, respectively. Moreover, we use separate nota-
tion for queue length (Qi and Ui ) and amount of dropped
packets (Si and Ti ). To make it clearer see Fig. 8.

Since both those processes are obtained from the same
real traffic we have

N∑

i=1

Xi =
2N∑

i=1

Yi (7)

where 2NΔ is the trace duration.

Fig. 8 The notation used in the proof. Xi and Y2i−1 + Y2i are the
amount of packets arrived at ith interval; Qi and U2i are queue length
at the end of ith interval. Si and T2i + T2i−1 are the amount of packets
dropped at ith interval

Note that ppa(2Δ) is estimated as a ratio between the
number of dropped packets and the number of sent packets.
Therefore, we have

ppa(2Δ) =
∑N

i=1 Si
∑N

i=1 Xi

(8)

and

ppa(Δ) =
∑2N

i=1 Ti
∑2N

i=1 Yi

. (9)

Since in (8) and (9) denominators equal (see (7)), we can
change the problem of showing that ppa(Δ) ≥ ppa(2Δ) to
the problem of showing that

2N∑

i=1

Ti ≥
N∑

i=1

Si. (10)

In order to prove inequality (10) we have to prove two
lemmas.

Lemma 1

Qi−1 = U2i−2 + a,

Qi = U2i + b,

Si > 0

⎫
⎬

⎭
⇒ Si ≤ T2i−1 + T2i + a − b.

(11)

Proof In order to prove Lemma 1 we show that it is impos-
sible that

Si > T2i−1 + T2i + a − b. (12)

Note that Si (respectively Ti ) is given by

Si = max(0,Xi + Qi−1 − 2CΔ − B). (13)

Note that Si > 0 ⇒ Qi = B (see (2) and (13)). Therefore
we can rewrite inequality (12) (according to notation pre-
sented in Lemma 1 a = Qi−1 − U2i−2 and b − B = −U2i
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and since Xi = Y2i−1 +Y2i (see Fig. 8)) and we get the equa-
tion

Y2i−1 +U2i−2 −CΔ+Y2i −CΔ−U2i > T2i−1 +T2i . (14)

Note that left-hand side of inequality (14) has three parts.
Part 1: Y2i−1 + U2i−2 − CΔ, Part 2: Y2i − CΔ and Part 3:
−U2i . We will recall those parts during the proof.

Let assume that T2i−1 = T2i = 0 and U2i−1 = 0 ⇒
Y2i−1 − CΔ + U2i−2 < 0. Part 1 is then negative so we can
assume that it is 0 (note that our task is to show that the left-
hand side of inequality (14) is not higher than the right-hand
side, therefore we always can overestimate some factors of
the left-hand side). Part 2 is positive and equals U2i or is
negative. Therefore, in both cases the left-hand side is not
higher than 0. Then, for T2i−1 = T2i = 0 and U2i−1 = 0, in-
equality (14) cannot be true.

Let assume that T2i−1 = T2i = 0 and U2i−1 > 0. Since
T2i−1 = 0 we have Y2i−1 − CΔ + U2i−2 < B . Then Part 1
equals U2i−1 and since Part 2 + Part 1 = U2i or the sum
is negative. Therefore, for T2i−1 = T2i = 0 and U2i−1 > 0
inequality (14) cannot be true.

Let assume that T2i−1 > 0 ∧ T2i = 0. Since T2i−1 > 0 ⇒
T2i−1 = Y2i−1 + U2i−2 − CΔ − B ∧ U2i−1 = B . We can
rewrite inequality (14) and get

Y2i−1 + U2i−2 − CΔ + Y2i − CΔ − U2i

> Y2i−1 + U2i−2 − CΔ − B. (15)

After algebraic transformations we have Y2i + B −
CΔ > U2i . Note that the left-hand side of this inequality
is U2i or 0. Therefore, for T2i−1 > 0 ∧ T2i = 0, inequality
(14) cannot be true.

Let assume that T2i−1 = 0 ∧ T2i > 0 ∧ U2i−1 = 0. Since
T2i > 0 ∧U2i−1 = 0 ⇒ T2i = Y2i −CΔ−B ∧U2i = B . We
can rewrite inequality (14) and get

Y2i−1 +U2i−2 −CΔ+Y2i −CΔ−B > Y2i −CΔ−B (16)

what is in contradiction with assumption that U2i−1 = 0.
Therefore, for T2i−1 = 0 ∧ T2i > 0 ∧ U2i−1 = 0 inequality
(14) cannot be true.

Let assume that T2i−1 = 0 ∧ T2i > 0 ∧ U2i−1 > 0. Since
T2i−1 = 0 ⇒ U2i−1 ≤ B and T2i > 0 ∧ U2i−1 ≤ B ⇒ T2i =
Y2i +U2i−1 −CΔ−B ∧U2i = B . Therefore we can rewrite
inequality (14) and get

Y2i−1 + U2i−2 − CΔ > U2i−1 (17)

what is in contradiction with the assumptions since the left-
hand side of the above inequality is U2i−1 or 0. Therefore,
for T2i−1 = 0 ∧ T2i > 0 ∧ U2i−1 > 0 inequality (14) cannot
be true.

The last assumption that we can make is T2i−1 > 0 ∧
T2i > 0. In this case we can rewrite inequality (14) and get

Y2i−1 + U2i−2 − CΔ + Y2i − CΔ − B

> Y2i−1 + U2i−2 − CΔ − B + Y2i + B − CΔ − B. (18)

After algebraic transformations, we obtain contradiction
with the assumption. Therefore, for all possible values of
T2i−1 and T2i , inequality (14) cannot be true. This completes
the proof. �

Lemma 2

Qi−1 = U2i−2 + a,

Qi = U2i + b,

Si = 0,

b > 0

⎫
⎪⎪⎬

⎪⎪⎭

⇒ T2i−1 + T2i ≥ b − a. (19)

Proof Since b > 0 we know that Qi > 0, since Si = 0 we
know that Xi + Qi−1 − 2CΔ ≤ B . Therefore we know that
Qi = Qi−1 + Xi − 2CΔ.

Again the proof will be made by showing that in any case
equation

T2i−1 + T2i < b − a (20)

cannot be true.
Using a and b definitions, knowing that 0 < Qi ≤ B and

Xi = Y2i−1 +Y2i (see Fig. 8) we can rewrite above equation
as

Y2i−1 +U2i−2 −CΔ+Y2i −CΔ−U2i > T2i−1 + T2i (21)

Note that inequality (14) and (21) are identical, and since
proof proposed in Lemma 1 can be repeated here, Lemma 2
is true. �

Note that in order to prove the inequality (10), it is
enough, if we show that Si ≤ T2i−1 + T2i . On the basis of
Lemma 1, it is true for a ≤ b. Therefore, we have to show
that if

Si − (T2i−1 + T2i ) = α > 0 (22)

we have

i−1∑

j=1

Sj −
2i−2∑

j=1

Tj = β ≥ α. (23)

The condition described by (22) and (23) means: it is possi-
ble that the process X lost more packets at ith time interval
than the Y process at the same time (i.e. at 2i − 1th and
2ith time intervals). Nevertheless, in such a case we know
that the number of all the previous losses of the Y process
(i.e.

∑2i−2
j=1 Tj ) is larger than the number of all the previous
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losses of the X process (i.e.
∑i−1

j=1 Sj ). Moreover, we know

that
∑i

j=1 Sj cannot be higher than
∑2i

j=1 Tj (it was needed
to prove Theorem 2).

Note that for Si > 0 we have Qi = B and therefore, in
Lemma 1, we have b ≥ 0. Since the interesting situation is
for a > b, therefore we know that a > 0. Since we start from
the empty queue we have to have such a situation for which
a ≤ b (at least a = b = 0). Note that in this case

T2i−1 + T2i − Si ≥ b − a = β. (24)

It means that Y lost b − a more packets than X. So in order
to obtain value b from the moment where a = 0, process Y

has to lose at least b packets. Note that this conclusion is
true for Si > 0 on the basis of Lemma 1 and for Si = 0 on
the basis of Lemma 2.

So in order to get Qi > U2i , the process Y had to lose
more packets than the process X. Moreover, Y had to lose at
least Qi −U2i = α more packets than X and the X lost given
by Si − (T2i−1 +T2i ) cannot be higher than α. Therefore, we
know that Si ≤ T2i−1 + T2i or

∑i−1
j=1 Sj − ∑2i−2

j=1 Tj ≥ Si −
(T2i−1 + T2i ). This completes the proof of Theorem 2. �

The prove of Theorem 2 is quite complicated and it seems
that one should be able to find a simpler one. Firstly we con-
sidered this theorem as obvious! Nevertheless, for any sim-
plification of this prove we could always find such combina-
tion of incoming packets that the prove was incorrect.

An interesting fact is that it should be possible to prove
that ppa(Δ) ≥ ppa(aΔ) for any a ≥ 1. Nevertheless, we
found this case much more difficult and since Theorem 2
is enough we did not considered it.
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